SORU
16 EKİM 2010, CUMARTESİ


Pearson korelasyon hesaplanması ve önemi Python

Giriş olarak iki liste alır ve Pearson correlation ve ilişkinin önemi döndüren bir fonksiyon arıyorum.

CEVAP
16 EKİM 2010, CUMARTESİ


Scipy de bir göz atabilirsiniz: http://docs.scipy.org/doc/scipy/reference/stats.html

from pydoc import help
from scipy.stats.stats import pearsonr
help(pearsonr)

>>>
Help on function pearsonr in module scipy.stats.stats:

pearsonr(x, y)
 Calculates a Pearson correlation coefficient and the p-value for testing
 non-correlation.

 The Pearson correlation coefficient measures the linear relationship
 between two datasets. Strictly speaking, Pearson's correlation requires
 that each dataset be normally distributed. Like other correlation
 coefficients, this one varies between -1 and  1 with 0 implying no
 correlation. Correlations of -1 or  1 imply an exact linear
 relationship. Positive correlations imply that as x increases, so does
 y. Negative correlations imply that as x increases, y decreases.

 The p-value roughly indicates the probability of an uncorrelated system
 producing datasets that have a Pearson correlation at least as extreme
 as the one computed from these datasets. The p-values are not entirely
 reliable but are probably reasonable for datasets larger than 500 or so.

 Parameters
 ----------
 x : 1D array
 y : 1D array the same length as x

 Returns
 -------
 (Pearson's correlation coefficient,
  2-tailed p-value)

 References
 ----------
 http://www.statsoft.com/textbook/glosp.html#Pearson Correlation

Bunu Paylaş:
  • Google+
  • E-Posta
Etiketler:

YORUMLAR

SPONSOR VİDEO

Rastgele Yazarlar

  • ASUS North America

    ASUS North A

    12 AĞUSTOS 2008
  • Numberphile

    Numberphile

    15 EYLÜL 2011
  • pissengehen

    pissengehen

    26 EYLÜL 2006