SORU
13 Kasım 2009, Cuma


Python ile temel bileşenler analizi

(PCA) boyut azaltma için temel bileşenler analizi kullanmak istiyorum. Numpy scipy ya zaten var ya da roll gerekiyor benim kendi numpy.linalg.eigh kullanarak?

Bilmiyorum sadece istiyorum için kullanmak tekil değer ayrışımı (SVD) çünkü benim veri girişi oldukça yüksek boyutlu (~460 Boyutlar), bu yüzden sanırım SVD olacak daha yavaş bilgisayar öz kovaryans matrisi.

Zaten hangi yöntemi kullanmak için zaman için doğru kararlar veren, ve belki de diğer en iyi duruma getirme hakkında bilmediğim hazır ayıklanacak bir uygulama arıyordum.

CEVAP
13 NİSAN 2010, Salı


Ay sonra, burada küçük bir sınıf PCA ve resim:

#!/usr/bin/env python
""" a small class for Principal Component Analysis
Usage:
    p = PCA( A, fraction=0.90 )
In:
    A: an array of e.g. 1000 observations x 20 variables, 1000 rows x 20 columns
    fraction: use principal components that account for e.g.
        90 % of the total variance

Out:
    p.U, p.d, p.Vt: from numpy.linalg.svd, A = U . d . Vt
    p.dinv: 1/d or 0, see NR
    p.eigen: the eigenvalues of A*A, in decreasing order (p.d**2).
        eigen[j] / eigen.sum() is variable j's fraction of the total variance;
        look at the first few eigen[] to see how many PCs get to 90 %, 95 % ...
    p.npc: number of principal components,
        e.g. 2 if the top 2 eigenvalues are >= `fraction` of the total.
        It's ok to change this; methods use the current value.

Methods:
    The methods of class PCA transform vectors or arrays of e.g.
    20 variables, 2 principal components and 1000 observations,
    using partial matrices U' d' Vt', parts of the full U d Vt:
    A ~ U' . d' . Vt' where e.g.
        U' is 1000 x 2
        d' is diag([ d0, d1 ]), the 2 largest singular values
        Vt' is 2 x 20.  Dropping the primes,

    d . Vt      2 principal vars = p.vars_pc( 20 vars )
    U           1000 obs = p.pc_obs( 2 principal vars )
    U . d . Vt  1000 obs, p.obs( 20 vars ) = pc_obs( vars_pc( vars ))
        fast approximate A . vars, using the `npc` principal components

    Ut              2 pcs = p.obs_pc( 1000 obs )
    V . dinv        20 vars = p.pc_vars( 2 principal vars )
    V . dinv . Ut   20 vars, p.vars( 1000 obs ) = pc_vars( obs_pc( obs )),
        fast approximate Ainverse . obs: vars that give ~ those obs.


Notes:
    PCA does not center or scale A; you usually want to first
        A -= A.mean(A, axis=0)
        A /= A.std(A, axis=0)
    with the little class Center or the like, below.

See also:
    http://en.wikipedia.org/wiki/Principal_component_analysis
    http://en.wikipedia.org/wiki/Singular_value_decomposition
    Press et al., Numerical Recipes (2 or 3 ed), SVD
    PCA micro-tutorial
    iris-pca .py .png

"""

from __future__ import division
import numpy as np
dot = np.dot
    # import bz.numpyutil as nu
    # dot = nu.pdot

__version__ = "2010-04-14 apr"
__author_email__ = "denis-bz-py at t-online dot de"

#...............................................................................
class PCA:
    def __init__( self, A, fraction=0.90 ):
        assert 0 <= fraction <= 1
            # A = U . diag(d) . Vt, O( m n^2 ), lapack_lite --
        self.U, self.d, self.Vt = np.linalg.svd( A, full_matrices=False )
        assert np.all( self.d[:-1] >= self.d[1:] )  # sorted
        self.eigen = self.d**2
        self.sumvariance = np.cumsum(self.eigen)
        self.sumvariance /= self.sumvariance[-1]
        self.npc = np.searchsorted( self.sumvariance, fraction )   1
        self.dinv = np.array([ 1/d if d > self.d[0] * 1e-6  else 0
                                for d in self.d ])

    def pc( self ):
        """ e.g. 1000 x 2 U[:, :npc] * d[:npc], to plot etc. """
        n = self.npc
        return self.U[:, :n] * self.d[:n]

    # These 1-line methods may not be worth the bother;
    # then use U d Vt directly --

    def vars_pc( self, x ):
        n = self.npc
        return self.d[:n] * dot( self.Vt[:n], x.T ).T  # 20 vars -> 2 principal

    def pc_vars( self, p ):
        n = self.npc
        return dot( self.Vt[:n].T, (self.dinv[:n] * p).T ) .T  # 2 PC -> 20 vars

    def pc_obs( self, p ):
        n = self.npc
        return dot( self.U[:, :n], p.T )  # 2 principal -> 1000 obs

    def obs_pc( self, obs ):
        n = self.npc
        return dot( self.U[:, :n].T, obs ) .T  # 1000 obs -> 2 principal

    def obs( self, x ):
        return self.pc_obs( self.vars_pc(x) )  # 20 vars -> 2 principal -> 1000 obs

    def vars( self, obs ):
        return self.pc_vars( self.obs_pc(obs) )  # 1000 obs -> 2 principal -> 20 vars


class Center:
    """ A -= A.mean() /= A.std(), inplace -- use A.copy() if need be
        uncenter(x) == original A . x
    """
        # mttiw
    def __init__( self, A, axis=0, scale=True, verbose=1 ):
        self.mean = A.mean(axis=axis)
        if verbose:
            print "Center -= A.mean:", self.mean
        A -= self.mean
        if scale:
            std = A.std(axis=axis)
            self.std = np.where( std, std, 1. )
            if verbose:
                print "Center /= A.std:", self.std
            A /= self.std
        else:
            self.std = np.ones( A.shape[-1] )
        self.A = A

    def uncenter( self, x ):
        return np.dot( self.A, x * self.std )   np.dot( x, self.mean )


#...............................................................................
if __name__ == "__main__":
    import sys

    csv = "iris4.csv"  # wikipedia Iris_flower_data_set
        # 5.1,3.5,1.4,0.2  # ,Iris-setosa ...
    N = 1000
    K = 20
    fraction = .90
    seed = 1
    exec "\n".join( sys.argv[1:] )  # N= ...
    np.random.seed(seed)
    np.set_printoptions( 1, threshold=100, suppress=True )  # .1f
    try:
        A = np.genfromtxt( csv, delimiter="," )
        N, K = A.shape
    except IOError:
        A = np.random.normal( size=(N, K) )  # gen correlated ?

    print "csv: %s  N: %d  K: %d  fraction: %.2g" % (csv, N, K, fraction)
    Center(A)
    print "A:", A

    print "PCA ..." ,
    p = PCA( A, fraction=fraction )
    print "npc:", p.npc
    print "% variance:", p.sumvariance * 100

    print "Vt[0], weights that give PC 0:", p.Vt[0]
    print "A . Vt[0]:", dot( A, p.Vt[0] )
    print "pc:", p.pc()

    print "\nobs <-> pc <-> x: with fraction=1, diffs should be ~ 0"
    x = np.ones(K)
    # x = np.ones(( 3, K ))
    print "x:", x
    pc = p.vars_pc(x)  # d' Vt' x
    print "vars_pc(x):", pc
    print "back to ~ x:", p.pc_vars(pc)

    Ax = dot( A, x.T )
    pcx = p.obs(x)  # U' d' Vt' x
    print "Ax:", Ax
    print "A'x:", pcx
    print "max |Ax - A'x|: %.2g" % np.linalg.norm( Ax - pcx, np.inf )

    b = Ax  # ~ back to original x, Ainv A x
    back = p.vars(b)
    print "~ back again:", back
    print "max |back - x|: %.2g" % np.linalg.norm( back - x, np.inf )

# end pca.py

alt text

Bunu Paylaş:
  • Google+
  • E-Posta
Etiketler:

YORUMLAR

SPONSOR VİDEO

Rastgele Yazarlar

  • Hallucination Land

    Hallucinatio

    14 Ocak 2011
  • PaysNatalAu's channel

    PaysNatalAu'

    11 Aralık 2010
  • UCBerkeley

    UCBerkeley

    3 Mayıs 2006